Chapter 6

Some Continuous Probability Distributions Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Continuous Uniform Distribution Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Figure 6.1 The density function for a random variable on the interval [1,3]

Theorem 6.1

The mean and variance of the uniform distribution are $\mu = \frac{A+B}{2} \text{ and } \sigma^2 = \frac{(B-A)^2}{12}.$

Normal Distribution

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Figure 6.2 The normal curve

Figure 6.3 Normal curves with $\mu_1 < \mu_2$ and $\sigma_1 = \mu_2$

Figure 6.4 Normal curves with $\mu_1 = \mu_2$ and $\sigma_1 < \sigma_2$

Figure 6.5 Normal curves with $\mu_1 < \mu_2$ and $\sigma_1 < \mu_2$

Theorem 6.2

The mean and variance of $n(x; \mu, \sigma)$ are μ and σ^2 , respectively. Hence, the standard deviation is σ .

Areas under the Normal Curve

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Figure 6.6 $P(x_1 < X < x_2) = \text{area of}$ the shaded region

Figure 6.7 $P(x_1 < X < x_2)$ for different normal curves

Definition 6.1

The distribution of a normal random variable with mean 0 and variance 1 is called a **standard normal distribution**.

Figure 6.8 The original and transformed normal distributions

Figure 6.9 Areas for Example 6.2

Figure 6.10 Areas for Example 6.3

Figure 6.11 Area for Example 6.4

Figure 6.12 Area for Example 6.5

Figure 6.13 Areas for Example 6.6

Applications of the Normal Distribution Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Figure 6.14 Area for Example 6.7

Figure 6.15 Area for Example 6.8

Figure 6.16 Area for Example 6.9

Figure 6.17 Specifications for Example 6.10

Figure 6.18 Area for Example 6.11

Figure 6.19 Area for Example 6.12

Figure 6.20 Area for Example 6.13

Figure 6.21 Area for Example 6.14

Normal Approximation to the Binomial Probability & Statistics for Engineers & Scientists

WALPOLE | MYERS | MYERS | YE

Theorem 6.3

If X is a binomial random variable with mean $\mu = np$ and variance $\sigma^2 = npq$, then the limiting form of the distribution of

$$Z = \frac{X - np}{\sqrt{npq}},$$

as $n \to \infty$, is the standard normal distribution n(z; 0, 1).

Figure 6.22 Normal approximation of *b*(*x*; 15,0.4)

6 - 32

Figure 6.23 Normal approximation of b(x; 15, 0.4) and $\sum_{x=7}^{9} b(x; 15, 0.4)$

6 - 33

Figure 6.24 Histogram for *b*(*x*; 6, 0.2)

Figure 6.25 Histogram for *b*(*x*; 15, 0.2)

Table 6.1 Normal Approximation andTrue Cumulative Binomial Probabilities

	p = 0.05, n = 10		p = 0.10, n = 10		p = 0.50, n = 10	
r	Binomial	Normal	Binomial	Normal	Binomial	Normal
0	0.5987	0.5000	0.3487	0.2981	0.0010	0.0022
1	0.9139	0.9265	0.7361	0.7019	0.0107	0.0136
2	0.9885	0.9981	0.9298	0.9429	0.0547	0.0571
3	0.9990	1.0000	0.9872	0.9959	0.1719	0.1711
4	1.0000	1.0000	0.9984	0.9999	0.3770	0.3745
5			1.0000	1.0000	0.6230	0.6255
6					0.8281	0.8289
7					0.9453	0.9429
8					0.9893	0.9864
9					0.9990	0.9978
10					1.0000	0.9997
	p = 0.05					
			p =	0.05		
	n =	= 20	$\frac{p-1}{n}$	= 50	n =	100
r	n = Binomial	= 20 Normal	$\frac{p-n}{n} = $ Binomial	= 50 Normal	n =Binomial	100 Normal
r 0	n = Binomial 0.3585	= 20 Normal 0.3015	$\frac{p-n}{n} = \frac{1}{0.0769}$	= 50 Normal 0.0968	n = Binomial 0.0059	100 Normal 0.0197
r 0 1	n = Binomial 0.3585 0.7358	= 20 Normal 0.3015 0.6985		= 50 Normal 0.0968 0.2578	n = Binomial 0.0059 0.0371	100 Normal 0.0197 0.0537
r 0 1 2	n = Binomial 0.3585 0.7358 0.9245	= 20 Normal 0.3015 0.6985 0.9382	$ \frac{p - 1}{n = 1} $ Binomial 0.0769 0.2794 0.5405		n = Binomial 0.0059 0.0371 0.1183	100 Normal 0.0197 0.0537 0.1251
r 0 1 2 3	n = Binomial 0.3585 0.7358 0.9245 0.9841	= 20 Normal 0.3015 0.6985 0.9382 0.9948			n = 0.0059 0.0371 0.1183 0.2578	100 Normal 0.0197 0.0537 0.1251 0.2451
r 0 1 2 3 4	n = Binomial 0.3585 0.7358 0.9245 0.9841 0.9974	= 20 Normal 0.3015 0.6985 0.9382 0.9948 0.9998	$\begin{array}{r} p-\\ n=\\ \hline \textbf{Binomial}\\ 0.0769\\ 0.2794\\ 0.5405\\ 0.7604\\ 0.8964 \end{array}$	$\begin{array}{r} \textbf{0.03} \\ \hline \textbf{Normal} \\ 0.0968 \\ 0.2578 \\ 0.5000 \\ 0.7422 \\ 0.9032 \end{array}$	n = 0.0059 0.0371 0.1183 0.2578 0.4360	100 Normal 0.0197 0.0537 0.1251 0.2451 0.4090
r 0 1 2 3 4 5	n = Binomial 0.3585 0.7358 0.9245 0.9841 0.9974 0.9997	= 20 Normal 0.3015 0.6985 0.9382 0.9948 0.9998 1.0000	$\begin{array}{r} p-\\ \hline n=\\ \hline 0.0769\\ 0.2794\\ 0.5405\\ 0.7604\\ 0.8964\\ 0.9622 \end{array}$	$\begin{array}{r} \textbf{0.03} \\ \hline \textbf{Normal} \\ 0.0968 \\ 0.2578 \\ 0.5000 \\ 0.7422 \\ 0.9032 \\ 0.9744 \end{array}$	n = 0.0059 0.0371 0.1183 0.2578 0.4360 0.6160	100 Normal 0.0197 0.0537 0.1251 0.2451 0.4090 0.5910
r 0 1 2 3 4 5 6	n = Binomial 0.3585 0.7358 0.9245 0.9841 0.9974 0.9997 1.0000	= 20 Normal 0.3015 0.6985 0.9382 0.9948 0.9998 1.0000 1.0000	$p = \frac{p}{n} = \frac{n}{0.0769}$ 0.0769 0.2794 0.5405 0.7604 0.8964 0.9622 0.9882	$\begin{array}{r} \hline 0.03 \\ \hline \hline 0.0968 \\ 0.2578 \\ 0.5000 \\ 0.7422 \\ 0.9032 \\ 0.9744 \\ 0.9953 \\ \end{array}$	n = Binomial 0.0059 0.0371 0.1183 0.2578 0.4360 0.6160 0.7660	100 Normal 0.0197 0.0537 0.1251 0.2451 0.4090 0.5910 0.7549
$egin{array}{c} m{r} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	n = Binomial 0.3585 0.7358 0.9245 0.9841 0.9974 0.9997 1.0000	= 20 Normal 0.3015 0.6985 0.9382 0.9948 0.9998 1.0000 1.0000	$p = \frac{p}{n} = \frac{n}{100000000000000000000000000000000000$	$\begin{array}{r} \textbf{0.03} \\ \hline \textbf{Normal} \\ 0.0968 \\ 0.2578 \\ 0.5000 \\ 0.7422 \\ 0.9032 \\ 0.9744 \\ 0.9953 \\ 0.9994 \end{array}$	$\begin{array}{r} n = \\ \hline \textbf{Binomial} \\ 0.0059 \\ 0.0371 \\ 0.1183 \\ 0.2578 \\ 0.4360 \\ 0.6160 \\ 0.7660 \\ 0.8720 \end{array}$	$\begin{array}{r} 100\\ \hline \textbf{Normal}\\ 0.0197\\ 0.0537\\ 0.1251\\ 0.2451\\ 0.4090\\ 0.5910\\ 0.7549\\ 0.8749 \end{array}$
r 0 1 2 3 4 5 6 7 8	n = Binomial 0.3585 0.7358 0.9245 0.9841 0.9974 0.9997 1.0000	= 20 Normal 0.3015 0.6985 0.9382 0.9948 0.9998 1.0000 1.0000	$\begin{array}{r} p-\\ \hline n=\\ \hline n=\\ 0.0769\\ 0.2794\\ 0.5405\\ 0.7604\\ 0.8964\\ 0.9622\\ 0.9882\\ 0.9968\\ 0.9992\\ \end{array}$	$\begin{array}{r} 0.03 \\ \hline \hline 0.0968 \\ 0.2578 \\ 0.5000 \\ 0.7422 \\ 0.9032 \\ 0.9744 \\ 0.9953 \\ 0.9994 \\ 0.9999 \end{array}$	$\begin{array}{l} n = \\ \hline \textbf{Binomial} \\ 0.0059 \\ 0.0371 \\ 0.1183 \\ 0.2578 \\ 0.4360 \\ 0.6160 \\ 0.7660 \\ 0.8720 \\ 0.9369 \end{array}$	$\begin{array}{r} 100\\ \hline \textbf{Normal}\\ 0.0197\\ 0.0537\\ 0.1251\\ 0.2451\\ 0.4090\\ 0.5910\\ 0.7549\\ 0.8749\\ 0.9463\\ \end{array}$
$\begin{array}{c} r \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}$	n = Binomial 0.3585 0.7358 0.9245 0.9841 0.9974 0.9997 1.0000	= 20 Normal 0.3015 0.6985 0.9382 0.9948 0.9998 1.0000 1.0000	$\begin{array}{r} p-\\ \hline n=\\ \hline n=\\ 0.0769\\ 0.2794\\ 0.5405\\ 0.7604\\ 0.8964\\ 0.9622\\ 0.9882\\ 0.9968\\ 0.9992\\ 0.9998\\ \hline \end{array}$	$\begin{array}{r} \textbf{0.03} \\ \hline \textbf{Normal} \\ 0.0968 \\ 0.2578 \\ 0.5000 \\ 0.7422 \\ 0.9032 \\ 0.9744 \\ 0.9953 \\ 0.9994 \\ 0.9999 \\ 1.0000 \end{array}$	$\begin{array}{r} n = \\ \hline \textbf{Binomial} \\ 0.0059 \\ 0.0371 \\ 0.1183 \\ 0.2578 \\ 0.4360 \\ 0.6160 \\ 0.7660 \\ 0.8720 \\ 0.9369 \\ 0.9718 \end{array}$	$\begin{array}{r} 100\\ \hline \textbf{Normal}\\ 0.0197\\ 0.0537\\ 0.1251\\ 0.2451\\ 0.4090\\ 0.5910\\ 0.7549\\ 0.8749\\ 0.9463\\ 0.9803\\ \end{array}$

Figure 6.26 Area for Example 6.15

Figure 6.27 Area for Example 6.15

Gamma and Exponential Distributions

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Definition 6.2

The gamma function is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx, \quad \text{for } \alpha > 0.$$

Figure 6.28 Gamma distributions

Theorem 6.4

The mean and variance of the gamma distribution are

$$\mu = \alpha \beta$$
 and $\sigma^2 = \alpha \beta^2$.

Corollary 6.1

The mean and variance of the exponential distribution are

 $\mu = \beta$ and $\sigma^2 = \beta^2$.

Chi-Squared Distributions

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Theorem 6.5

The mean and variance of the chi-squared distribution are

 $\mu = v$ and $\sigma^2 = 2v$.

Beta Distribution

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Definition 6.3

A **beta function** is defined by

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \text{ for } \alpha,\beta > 0,$$

where $\Gamma(\alpha)$ is the gamma function.

Theorem 6.6

The mean and variance of a beta distribution with parameters α and β are

$$\mu = \frac{\alpha}{\alpha + \beta}$$
 and $\sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$,

respectively.

Lognormal Distribution

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Figure 6.29 Lognormal distributions

Theorem 6.7

The mean and variance of the lognormal distribution are

$$\mu = e^{\mu + \sigma^2/2}$$
 and $\sigma^2 = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$.

Weibull Distribution (Optional) Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

Theorem 6.8

The mean and variance of the Weibull distribution are

$$\mu = \alpha^{-1/\beta} \Gamma\left(1 + \frac{1}{\beta}\right) \text{ and } \sigma^2 = \alpha^{-2/\beta} \left\{ \Gamma\left(1 + \frac{2}{\beta}\right) - \left[\Gamma\left(1 + \frac{1}{\beta}\right)\right]^2 \right\}$$

Figure 6.30 Weibull distributions $(\alpha = 1)$

Potential **Misconceptions** and Hazards; **Relationship to** Material in Other Chapters

Probability & Statistics for Engineers & Scientists

NINTH EDITION

WALPOLE | MYERS | MYERS | YE

